↳ ITRS
↳ ITRStoIDPProof
z
f(TRUE, x, y) → f(&&(>@z(x, y), >@z(y, 2@z)), +@z(1@z, x), *@z(2@z, y))
f(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
f(TRUE, x, y) → f(&&(>@z(x, y), >@z(y, 2@z)), +@z(1@z, x), *@z(2@z, y))
(0) -> (0), if ((+@z(1@z, x[0]) →* x[0]a)∧(*@z(2@z, y[0]) →* y[0]a)∧(&&(>@z(x[0], y[0]), >@z(y[0], 2@z)) →* TRUE))
f(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (0), if ((+@z(1@z, x[0]) →* x[0]a)∧(*@z(2@z, y[0]) →* y[0]a)∧(&&(>@z(x[0], y[0]), >@z(y[0], 2@z)) →* TRUE))
f(TRUE, x0, x1)
(1) (+@z(1@z, x[0])=x[0]1∧&&(>@z(x[0]1, y[0]1), >@z(y[0]1, 2@z))=TRUE∧&&(>@z(x[0], y[0]), >@z(y[0], 2@z))=TRUE∧+@z(1@z, x[0]1)=x[0]2∧*@z(2@z, y[0])=y[0]1∧*@z(2@z, y[0]1)=y[0]2 ⇒ F(TRUE, x[0]1, y[0]1)≥NonInfC∧F(TRUE, x[0]1, y[0]1)≥F(&&(>@z(x[0]1, y[0]1), >@z(y[0]1, 2@z)), +@z(1@z, x[0]1), *@z(2@z, y[0]1))∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(y[0]1, 2@z)), +@z(1@z, x[0]1), *@z(2@z, y[0]1))), ≥))
(2) (>@z(+@z(1@z, x[0]), *@z(2@z, y[0]))=TRUE∧>@z(*@z(2@z, y[0]), 2@z)=TRUE∧>@z(x[0], y[0])=TRUE∧>@z(y[0], 2@z)=TRUE ⇒ F(TRUE, +@z(1@z, x[0]), *@z(2@z, y[0]))≥NonInfC∧F(TRUE, +@z(1@z, x[0]), *@z(2@z, y[0]))≥F(&&(>@z(+@z(1@z, x[0]), *@z(2@z, y[0])), >@z(*@z(2@z, y[0]), 2@z)), +@z(1@z, +@z(1@z, x[0])), *@z(2@z, *@z(2@z, y[0])))∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(y[0]1, 2@z)), +@z(1@z, x[0]1), *@z(2@z, y[0]1))), ≥))
(3) (x[0] + (-2)y[0] ≥ 0∧-3 + (2)y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧-3 + y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(y[0]1, 2@z)), +@z(1@z, x[0]1), *@z(2@z, y[0]1))), ≥)∧2 + (-1)Bound + (-2)y[0] + x[0] ≥ 0∧-2 + (2)y[0] ≥ 0)
(4) (x[0] + (-2)y[0] ≥ 0∧-3 + (2)y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0∧-3 + y[0] ≥ 0 ⇒ (UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(y[0]1, 2@z)), +@z(1@z, x[0]1), *@z(2@z, y[0]1))), ≥)∧2 + (-1)Bound + (-2)y[0] + x[0] ≥ 0∧-2 + (2)y[0] ≥ 0)
(5) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + (-2)y[0] ≥ 0∧-3 + y[0] ≥ 0∧-3 + (2)y[0] ≥ 0 ⇒ 2 + (-1)Bound + (-2)y[0] + x[0] ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(y[0]1, 2@z)), +@z(1@z, x[0]1), *@z(2@z, y[0]1))), ≥)∧-2 + (2)y[0] ≥ 0)
(6) (x[0] + -4 + (-1)y[0] ≥ 0∧-6 + x[0] + (-2)y[0] ≥ 0∧y[0] ≥ 0∧3 + (2)y[0] ≥ 0 ⇒ -4 + (-1)Bound + (-2)y[0] + x[0] ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(y[0]1, 2@z)), +@z(1@z, x[0]1), *@z(2@z, y[0]1))), ≥)∧4 + (2)y[0] ≥ 0)
(7) (2 + y[0] + x[0] ≥ 0∧x[0] ≥ 0∧y[0] ≥ 0∧3 + (2)y[0] ≥ 0 ⇒ 2 + (-1)Bound + x[0] ≥ 0∧(UIncreasing(F(&&(>@z(x[0]1, y[0]1), >@z(y[0]1, 2@z)), +@z(1@z, x[0]1), *@z(2@z, y[0]1))), ≥)∧4 + (2)y[0] ≥ 0)
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = -1
POL(&&(x1, x2)) = 1
POL(2@z) = 2
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = 1
POL(F(x1, x2, x3)) = 1 + (-1)x3 + x2
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
F(TRUE, x[0], y[0]) → F(&&(>@z(x[0], y[0]), >@z(y[0], 2@z)), +@z(1@z, x[0]), *@z(2@z, y[0]))
F(TRUE, x[0], y[0]) → F(&&(>@z(x[0], y[0]), >@z(y[0], 2@z)), +@z(1@z, x[0]), *@z(2@z, y[0]))
*@z1 ↔
+@z1 ↔
&&(TRUE, TRUE)1 → TRUE1
FALSE1 → &&(TRUE, FALSE)1
&&(FALSE, TRUE)1 → FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
f(TRUE, x0, x1)